Metrics

  • citations in SCIndeks: [1]
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:0
  • full-text downloads in 30 days:0

Contents

article: 2 from 4  
Back back to result list
2010, vol. 36, iss. 2, pp. 138-146
Energy consumption in the open field and greenhouse tomato production
University of Belgrade, Faculty of Agriculture, Serbia

emailmdjevic@agrif.bg.ac.rs
Project:
Projekat Ministarstva nauke Republike Srbije, br. 20076: Unapređenje i očuvanje poljoprivrednih resursa u funkciji racionalnog korišćenja energije i kvaliteta poljoprivredne proizvodnje

Abstract
The aim of this paper is to analyze energy patterns in open and greenhouse tomato production, since tomato is very important vegetable in human nutrition with tendency to be used whole year. The greenhouses used were one tunnel structure, covered with double PE folia, 5 x 20 m and one gutter-connected double PE covered structure 21m wide and 250m long. The results obtained lead to the conclusion that lower specific energy per production surface can be expected in conditions of the open filed and that, regarding the greenhouses lower value for energy consumption can be expected in case of multi-span greenhouses. The results show that there are differences in yield as well as in energy consumption between the open and the greenhouse tomato production. The highest yield was measured in the gutter-connected greenhouse, 23.78 kg/m2 and lowest in the open filed, 17 kg/m2. The direct and the indirect energy input measured show that the lower specific energy consumption per production surface can be expected in the open filed compared to the greenhouse tomato production. The lowest energy input per kilogram of product was measured for the gutter-connected greenhouse, of 0.89 MJ/kg, and the highest for the tunnel structure, 1.21 MJ/kg. The highest energy productivity was measured for the gutterconnected structure, 1.12 kg/MJ and the lowest for the tunnel structure, 0.83 MJ/kg. Based on the energy consumption and the energy output it can be seen that the tomato production in the open filed is less energy demanding compared to the tomato production in the greenhouses. The structure of energy inputs shows that 80 up to 90% of the total energy consumption is based on indirect energy inputs, mostly fertilizers, human labor and water for irrigation. Results also show that energy consumption must be analyzed together with the energy output. Greenhouse structures had better ratio between yield and energy consumption compared to the open filed production system. This has also led to the higher energy productivity in the greenhouse tomato production systems.
References
Babić, M., Babić, L. (2003) Proizvodnja u zaštićenom prostoru na bazi biomase kao energenta. Savremena poljoprivredna tehnika, vol. 29, br. 3, str. 97-105
Badger, P.C. (1999) Solid fuels. in: CIGR Handbook, vol. 3, str. 248-288
Brkić, M., Škrbić, N. (1999) Zagrevanje plastenika i staklenika. Savremena poljoprivredna tehnika, 25, 3, str. 102-111
Dimitrijević, A., Đević, M. (2005) Potrošnja energije i energetska efikasnost proizvodnje u kontrolisanim uslovima. in: Klimatizacija, grejanje, hlađenje i ventilacija, naučni stručni skup, (III), Zlatibor
Dimitrijević, A., Đević, M. (2007) Potrošnja energije u objektima zaštićenog prostora. Savremena poljoprivredna tehnika, vol. 33, br. 3-4, str. 179-186
Dimitrijević, M., Đević, M., Boretos, M., Miodragović, R. (1999) Design and control systems in greenhouses. in: Greenhouses, Tehnique towards the 3rd millenium, Haifa, Israel
Đević, M., Dimitirjević, A. (2009) Energy consumption for different greenhouse construction. Energy, 34(9): 1325
Enoch, H.Z. (1978) A theory for optimalization of primary production in protected cultivation, I, Influence of aerial environment upon primary plant production. Acta Hort, 76: 31-44
Hanan, J.J. (1998) Greenhouses: Advanced technology for protected cultivation. Boca Raton, FL, itd: CRC Press
Hatirli, S., Ozkan, B., Fert, C. (2006) Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy, 31(4): 427
Ilin, Ž., Marković, V., Mišković, A., Vujasinović, V. (2003) Proizvodnja rasada paradajza. Savremena poljoprivredna tehnika, vol. 29, br. 3, str. 69-75
Janić, T., Brkić, M., Bajkin, A. (2005) Proračun potrebne količine toplotne energije za zagrevanje plastenika od 0,5 ha u realnim uslovima. Savremena poljoprivredna tehnika, vol. 31, br. 4, str. 181-188
Lazić, B., Ilin, Ž. (1999) Stanje i pravci razvoja proizvodnje u zaštićenom prostoru. Savremena poljoprivredna tehnika, 25 (3):91-101
Momirović, N. (2003) Škola gajenja povrća. Poljoprivredni list, Specijalno Izdanje, 50-53
Nelson, P.V. (2003) Greenhouse operation & management. Prentice Hall, 6th Edition
Ortiz-Canavate, J., Hernanz, J.L. (1999) Energy analysis and saving. in: CIGR Handbook of agricultural engineering, energy and biomass engineering, 3, p. 13-37
Ozkan, B., Fert, C., Karadeniz, F. (2007) Energy and cost analysis for greenhouse and open-filed grape production. Energy, 32(8): 1500
Storck, H. (1978) Towards an economic of energy in horticulture. Acta Hort., 76: 15- 30
 

About

article language: Serbian
document type: Original Scientific Paper
published in SCIndeks: 25/05/2010

Related records

Savr poljopriv tehnika (2011)
Energy efficiency of the lettuce open filed and greenhouse production
Dimitrijević Aleksandra, et al.

Savr poljopriv tehnika (2009)
Energy analysis for greenhouse and open field tomato production
Đević Milan, et al.

Poljoprivredna tehnika (2009)
Energy efficiency of the open filed and greenhouse tomato production
Đević Milan, et al.

show all [30]