Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 2 od 28  
Back povratak na rezultate
Fazi logički baziran kontroler za integrisano upravljanje zaštićene proizvodnje
aLaboratory for Protected Cultivation & Energy Efficiency, FICT, FON University, Skopje, Republic of Macedonia
bSchool of Engineering and the Built Environment, University of Wolverhampton, Wolverhampton, United Kingdom

e-adresaoliver.iliev@fon.edu.mk
Ključne reči: fazi kontrola; zaštićena proizvodnja; složeni sistemi; energetska efikasnost; upravljanje voda; inferencijske mašine
Sažetak
U smislu sistemske teorije, staklenici predstavljaju kompleksan nelinearan sistem sa naglašenom podsistemskom interakcijom. Razdvajanje sistema na nezavisne podsisteme se koriste da bi se dobile pojednostavljenje upravljačke strukture za nezavisne upravljačke petlje. Ovakav pristup daje ograničene rezultate zbog jakih interakcija koje postoje između sistemskih varijabli. Ovaj pristup ne omogućava optimizaciju sistemskog ponašanja u smislu energetske efikasnosti i potrošnje vode u sistemu. U ovom radu je prezentiran dizajn fazi logički baziranog kontrolera koji optimizira grejanje staklenika, energetsku potrošnju i potrošnju vode. Dizajn uključuje glavne lingvističke varijable za senzorski i aktuatorski podsistem. Funkcije pripadnosti fazi inferencijskog sistema (FIS) su generisane, izvedene su simulacije i analiza ponašanja dizajniranog sistema.
Reference
Arvanitis, K.G., Paraskevopoulos, P.N., Vernardos, A.A. (2000) Multirate adaptive temperature control of greenhouses. Computers and Electronics in Agriculture, 26(3): 303-320
Baturone, I., Moreno-Velo, F.J., Sanchez-Solano, S., Blanco, V., Ferruz, J. (2005) Embedded fuzzy controllers on standard DSPs. Proceedings of the IEEE International Symposium on Industrial Electronics, June 20-23, Dubrovnik, pp: 1-7
Bennis, N., Duplaix, J., Enea, G., Haloua, M., Youlal, H. (2005) An advanced control of greenhouse climate. u: Proceedings of the 33rd International Symposium Actual Tasks on Agricultural Engineering, Feb. 21-25, 265-277
Castañeda-Miranda, R., Ventura-Ramos, E., del Rocío, P.R., Herrera-Ruiz, G. (2006) Fuzzy Greenhouse Climate Control System based on a Field Programmable Gate Array. Biosystems Engineering, 94(2): 165-177
Dozier, G., Homaifar, A., Tunstel, E., Battle, D. (2001) An introduction to evolutionary computation. u: Zilouchian A., M. Jamshidi [ur.] Intelligent Control Systems using Soft Computing Methodologies, Boca Raton, FL: CRC Press
Hanan, J.J. (1998) Greenhouses: Advanced technology for protected cultivation. Boca Raton, FL, itd: CRC Press
Horiuchi, J. (2002) Fuzzy modeling and control of biological processes. Journal of bioscience and bioengineering, 94(6): 574-8
Iliev, O.L., Gough, N.E., Stojanov, G.K., Dimirovski, G.M., Zakeri, A. (1996) Obstacle avoidance for intelligent AGVs based on fuzzy control and expectation. u: 13th IFAC World Congress (J. B. Cruz Jr. IPC Chairman), San Francisco CA (USA), Volume Q, pp. 441-447
Iliev, O.L., Dimirovski, G., Gacovski, Z.M., Gough, N.E., Griffith, I. (1996) Discrete event object oriented modeling of intelligent communication protocols. u: Jamshidi M. [ur.] World Automation Congress (WAC'96), Intelligent Automation and Control, Albuquerque, NM: TSI Press (Selected Papers), Vol. 4 pp 325-330
Iliev, O.L., Percinkova, B., Gough, N.E., Zakeri, A. (1999) Two level control system for FMS - An object oriented approach. u: World Congress of International Federation of Automatic Control (14th), Beijing, P.R. China 5-9. July
Jamshidi, M. (2003) Tools for intelligent control: Fuzzy controllers, neural networks and genetic algorithms. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 361(1809): 1781-1808
Kovacic, Z., Bogdan, S. (2006) Fuzzy controllers design theory and applications. Boca Raton, FL: CRC Taylor and Francis Group
Lafont, F., Balmat, J. (2002) Optimized fuzzy control of a greenhouse. Fuzzy Sets and Systems, 128, 1, 47-59
Mitra, A.K., Nath, S., Sharma, A.K. (2008) Fog forecasting using rule-based fuzzy inference system. Journal of the Indian Society of Remote Sensing, 36(3): 243-253
Monteith, J.L. (1981) Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society, 107(451): 1-27
Pinon, S.M., Camacho, E.F., Uchen, F.K. (2000) Constrained predictive control of greenhouse. Spain: Elsevier Science, ISBN: 0-0-8044184-X
Rodríguez, F., Guzmán, J.L., Berenguel, M., Arahal, M.R. (2008) Adaptive hierarchical control of greenhouse crop production. International Journal of Adaptive Control and Signal Processing, 22(2): 180-197
Tanner, C.B. (1966) Comparison of energy balance and mass transport methods for measuring evaporation. u: Evarotranspiration and its role in water resources management ASAE, St. Jospeh, MI. Proc., 45-48
Zadeh, L.A. (1993) The role of fuzzy logic and soft computing in the conception and design of intelligent systems. u: The Austrian Artificial Intelligence Conference on Fuzzy Logic in Artificial Intelligence, (FLAI93), (8th), London, UK, Proceeding, Springer-Verlag
Zarazua, S.G.M., Archuleta, R.B.A., Luna, M.A., Ayala, T.M., Garcia, R.E., Vera, P.R.R., Ruiz, H.G. (2011) Trends in Automated Systems Development for Greenhouse Horticulture. International Journal of Agricultural Research, 6(1): 1-9
Zimmermann, H.J. (1991) Fuzzy set theory and its applications. Dordrecht, itd: Kluwer Academic
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
objavljen u SCIndeksu: 22.03.2013.