Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 9 od 213  
Back povratak na rezultate
2022, vol. 50, br. 1, str. 16-23
Procena ekonomičnosti industrijskog sistema za solarno grejanje vode
aThe Research Institute King Fahd University of Petroleum & Minerals, Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), Dhahran, Saudi Arabia
bIstanbul Technical University, Faculty of Aeronautics and Astronautics, Aeronautical Engineering Department, Istanbul, Turkey

e-adresasrehman@kfupm.edu.sa
Projekat:
The authors acknowledge the support of the King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia.

Sažetak
U ovom radu se razmatraju solarni sistemi za grejanje vode sa nominalnom potrošnjom vode od 24 kubna metra dnevno. Da bi se identifikovala bolja opcija, i tehnološki i ekonomski, posmatrana je tipična geografska lokacija u Saudijskoj Arabiji, odnosno Abha. Utvrđeno je da su vrednosti unutrašnje stope povrata (USP) za solarne kolektore sa zastakljenjem veće u poređenju sa nezastakljenim kolektorima. Zastakljeni kolektori su efikasniji, obezbeđuju veću uštedu u potrošnji goriva i rezultiraju smanjenjem emisije gasova staklene bašte (EGSB). Nalazi ove studije mogu se koristiti za lokacije sa sličnim tipom klimatskih uslova u bilo kom delu sveta.
Reference
*** Weblink1. Available: weblink1: http://shrinkthatfootprint.com/solar-hot-water-China. [Accessed: 04-Sep-2015]
*** (2013) Global Status Report, Paris: REN21 Secretariat. Paris
Akinoǧlu, B.G., Shariah, A.M., Ecevit, A. (1999) Solar Domestic Water Heating in Turkey. Energy, 24(5): 363-374
Allouhi, A., Jamil, A., Kousksou, T., El, R.T., Mourad, Y., Zeraouli, Y. (2015) Solar Domestic Heating Water Systems in Morocco: An Energy Analysis. Energy Convers. Manag., 92(3): 105-113
Cassard, H., Denholm, P., Ong, S. (2011) Technical and Economic Performance of Residential Solar Water Heating in the United States. Renew. Sustain. Energy Rev., 15(8): 3789-3800
Greening, B., Azapagic, A. (2014) Domestic Solar Thermal Water Heating: A Sustainable Option for the UK?. Renew. Energy, 63(3): 23-36
Halawa, E., Chang, K.C., Yoshinaga, M. (2015) Thermal Performance Evaluation of Solar Water Heating Systems in Australia, Taiwan and Japan: A Comparative Review. Renew. Energy, 83(11): 1279-1286
Hazami, M., Naili, N., Attar, I., Farhat, A. (2013) Solar Water Heating Systems Feasibility for Domestic Requests in Tunisia: Thermal Potential and Economic Analysis. Energy Convers. Manag., 76(12): 599-608
Huang, P., Castán, B.V., Liu, Y., Ma, H. (2018) The Governance of Urban Energy Transitions: A Comparative Study of Solar Water Heating Systems in Two Chinese Cities. J. Clean. Prod., 180: 222-231
Kablan, M.M. (2004) Techno-Economic Analysis of the Jordanian Solar Water Heating System. Energy, 29(7): 1069-1079
Kulkarni, G.N., Kedare, S.B., Bandyopadhyay, S. (2009) Optimization of Solar Water Heating Systems Through Water Replenishment. Energy Convers. Manag., 50(3): 837-846
Li, R., Dai, Y., Wang, R. (2015) Experimental Investigation and Simulation Analysis of the Thermal Performance of a Balcony Wall Integrated Solar Water Heating Unit. Renew. Energy, 75(3): 115-122
Msimanga, B., Sebitosi, A.B. (2014) South Africa's Non-Policy Driven Options for Renewable Energy Development. Renew. Energy, 69: 420-427
Naspolini, H.F., Rüther, R. (2016) The Effect of Measurement Time Resolution on the Peak Time Power Demand Reduction Potential of Domestic Solar Hot Water Systems. Renew. Energy, 88: 325-332
Natarajan, N., Rehman, S., Shiva, N., Vasudevan, M. (2020) Evaluation of Wind Energy Potential of the State of Tamil Nadu, India Based on Trend Analysis. FME Trans, 49(1): 244-251
Rašuo, B., Dinulović, M., Veg, A., Grbović, A., Bengin, A. (2014) Harmonization of New Wind Turbine Rotor Blades Development Process: A Review. Renew. Sustain. Energy Rev., 39: 874-882
Rašuo, B., Bengin, A., Veg, A. (2010) On Aerodynamic Optimization of Wind Farm Layout. PAMM Proc. Appl. Math. Mech., 10(1): 539-540
Rašuo, B.P., Bengin, A.Č. (2010) Optimization of wind farm layout. FME Transactions, vol. 38, br. 3, str. 107-114
Rehman, S., Baseer, M.A., Alhems, L.M. (2020) GIS-based multi-criteria wind farm site selection methodology. FME Transactions, vol. 48, br. 4, str. 855-867
Rehman, S., Natarajan, N., Mohandes, M.A., Alam, M. (2020) Latitudinal wind power resource assessment along coastal areas of Tamil Nadu, India. FME Transactions, vol. 48, br. 3, str. 566-575
Rehman, S., Khan, S.A., Alhems, L.M. (2020) The effect of acceleration coefficients in Particle Swarm Optimization algorithm with application to wind farm layout design. FME Transactions, vol. 48, br. 4, str. 922-930
Rehman, S., Natarajan, N., Vasudevan, M., Alhems, L.M. (2020) Assessment of Wind Energy Potential Across Varying Topographical Features of Tamil Nadu, India. Energy Explor. Exploit., 38(1): 175-200
Rehman, S., Aliyu, K.N., Alhems, L.M., Mohandes, M.A., Himri, Y., Allouhi, A., Mahbub, A.Md. (2021) A comprehensive global review of building integrated photovoltaic systems. FME Transactions, vol. 49, br. 2, str. 253-268
Sadhishkumar, S., Balusamy, T. (2014) Performance Improvement in Solar Water Heating Systems: A Review. Renew. Sustain. Energy Rev., 37: 191-198
Sadiq, M. (2018) Solar Water Heating System for Residential Consumers of Islamabad, Pakistan: A Cost Benefit Analysis. J. Clean. Prod., 172: 2443-2453
Salman, U.T., Rehman, S., Alawode, B., Alhems, L.M. (2021) Short term prediction of wind speed based on long-short term memory networks. FME Transactions, vol. 49, br. 3, str. 643-652
Sanders, K.T., Webber, M.E. (2015) Evaluating the Energy and CO2 Emissions Impacts of Shifts in Residential Water Heating in the United States. Energy, 81: 317-327
Sharafi, M., Elmekkawy, T.Y., Bibeau, E.L. (2015) Optimal Design of Hybrid Renewable Energy Systems in Buildings with Low to High Renewable Energy Ratio. Renew. Energy, 83: 1026-1042
Shukla, R., et al. (2013) Recent Advances in the Solar Water Heating Systems: A Review. Renew. Sustain. Energy Rev., 19: 173-190
Wang, Z., Yang, W., Qiu, F., Zhang, X., Zhao, X. (2015) Solar Water Heating: From Theory, Application, Marketing and Research. Renew. Sustain. Energy Rev., 41: 68-84
Wang, Z., Qiu, F., Yang, W., Zhao, X. (2015) Applications of Solar Water Heating System with Phase Change Material. Renewable and Sustainable Energy Reviews, 52: 645-652
Xue, H.S. (2016) Experimental Investigation of a Domestic Solar Water Heater with Solar Collector Coupled Phase-Change Energy Storage. Renew. Energy, 86: 257-261
Yan, C., Wang, S., Ma, Z., Shi, W. (2015) A Simplified Method for Optimal Design of Solar Water Heating Systems Based on Life-Cycle Energy Analysis. Renew. Energy, 74(2): 271-278
Yilmaz, I.H. (2018) Residential Use of Solar Water Heating in Turkey: A Novel Thermo-Economic Optimization for Energy Savings, Cost Benefit and Ecology. J. Clean. Prod., 204: 511-524
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2201016R
primljen: 15.07.2021.
prihvaćen: 15.11.2021.
objavljen u SCIndeksu: 10.06.2022.
Creative Commons License 4.0